
Kn0wledge-Based Reasoning

CONTRACT NASI-19000

MAY 1993

(NASA-CR-4507) KNOWLEDGE-BASED

REASONING IN THE PALADIN TACTICAL

DECISION GENERATION SYSTEM Fina|

Report (Lockheed Engineering and

Sciences Corp.) IO p

H1/08

N93-27603

Unclas

0167887

I

_fr _j i_

NASA Contractor Report 4507

Knowledge-Based Reasoning

in the Paladin Tactical

Decision Generation System

Alan R. Chappell

Lockheed Engineering & Sciences Company

Hampton, Virginia

Prepared for

Langley Research Center

under Contract NASl-19000

National Aeronautics and

Space Administration

Office of Management

Scientific and Technical
Information Program

1993

i

t

i
!

i

q

z

KNOWLEDGE-BASED REASONING IN THE PALADIN

TACTICAL DECISION GENERATION SYSTEM

Abstract

A real-time tactical decision generation system
for air combat engagements, Paladin, has been
developed. A pilot's job in air combat includes
tasks that are largely symbolic. These symbolic
tasks are generally performed through the
application of experience and training (i.e.
knowledge) gathered over years of flying a fighter
aircraft. Two such tasks, situation assessment and
throttle control, are identified and broken out in

Paladin to be handled by specialized knowledge-
based systems. Knowledge pertaining to these
tasks is encoded into rule-bases to provide the
foundation for decisions. Paladin uses a custom

built inference engine and a partitioned rule-base
structure to give these symbolic results in real-
time. This paper provides an overview of
knowledge-based reasoning systems as a subset of
rule-based systems. The knowledge used by
Paladin in generating results as well as the system
design for real-time execution is discussed.

Introduction

Modern air combat simulations must perform
in a greatly expanded and rapidly changing tactical
environment. Such a simulation system must be
able to model new aircraft and their advanced

capabilities. The system should have a modular
software structure so that new weapons systems or
aircraft subsystems (e.g. sensors or propulsion
systems), modifications to aircraft control systems,
or changes to the aircraft configuration can be
easily incorporated. In support of the study of

aircraft with enhanced maneuverability at the
Langley Research Center (LaRC), a Tactical
Guidance Research and Evaluation System
(TiGRES) is being developed. The design and
development of TiGRES as well as its relationship
to past and current air combat simulation systems
is described in detail in (Goodrich, 1990).

The TiGRES system is designed to allow
researchers to develop and evaluate aircraft systems
in a tactical environment. The three main

components of TiGRES are a Tactical Decision
Generator (TDG), the Tactical Maneuver Simulator

(TMS), and the Differential Maneuvering Simulator
(DMS).

A TDG is an intelligent system that selects the
combat maneuvers to perform throughout an air
combat engagement. Both the TMS and the DMS
use a TDG as the automated opponent. A version
of the TDG known as Paladin currently is used in
TiGRES research.

The TMS (Goodrich, 1992) provides a high-
fidelity batch air combat simulation environment
for the development and testing of various
guidance and control strategies. The researcher _
defines the initial conditions of the air combat

engagement, and the TMS then controls the aircraft
using either simple trajectory commands or a TDG.
The main elements of the TMS are a high-fidelity,
nonlinear six degree-of-freedom (d.o.f.) rigid-
body aircraft dynamic model, including the control
system, a TDG, and a user interface.

The DMS consists of two 40' diameter

simulation domes and one 20' diameter dome. The

facility is intended for the real-time simulation of
air combat engagements between piloted aircraft.
By using a TDG to control one of the airplanes, it
is possible to test the TDG against a human
opponent. This feature allows the guidance logic
to be evaluated against one or more unpredictable
and adaptive human opponents.

The Paladin System

Paladin is a knowledge-based TDG. Paladin is
implemented using artificial intelligence (AI)
techniques and a large amount of information about
aircraft, flight dynamics, and air combat so that the
system can provide insight into both the tactical

benefits and costs of enhanced maneuverability.

Paladin uses an object-oriented programming
approach (Meyer, 1988) to represent each aircraft
in the simulation. Each aircraft object includes
information on the current state of the aircraft's

offensive systems (e.g. guns, missile systems, fire
control radars, etc.), defensive systems (e.g.
electronic counter-measures, chaff, etc.), and

i-- l
Situation]Assessment

t
RelativeGeometry

Active Throttle]Controller

l
Extrapolate Opponent's]Future State

II I

Evaluate

Maneuvers

Maneuvers k

Figure 1. Schematic of The Paladin System

Choose Best]Maneuver

Execute]Maneuver

propulsion system. This state information is used
to help guide Paladin's reasoning process.

Paladin utilizes modular software subroutines

and speciai[zed computer hardware. The
separation of the aircraft simulation and decision
logic components allows each module or
knowledge source to be designed and implemented

using the hardware and programming techniques
specifically suited for its function. The use of

highly specialized and independent knowledge
sources also provides for modular protection
(Meyer, 1988), confining the effect of an error
occurring in a module at run-time to that module,
or to a small set of neighboring modules in the

Communication between the distributed knowledge

sources is achieved using customized DECNett

based client/server software developed in-house
for TiGRES. This software allows for

synchronization, communications, and data
sharing between heterogeneous computers running
the DECNet communications protocol. Paladin is
currently implemented as a serial blackboard
system (McManus, 1990), so no serialization or
concurrency related software is required. Each
knowledge source requests all of the data required

to perform its computa_ti0n from the blackbo_d a!
the start of its execution cycle, andp0sts Its results
to the blackboard at the end of its execution cycle.

program. The confining effect of the modular - :
protection was used to aid in the design and Paladin models a combat engagement as a

debugging process of Paladin. Each knowledge series of discrete decisions. At temporally regular
source was developed and tested independently decision points (0.25 second intervals under most
before it was incorporated into the system, circumstances), the system chooses the "best"

tactical maneuver to follow until the next decision

The independence of the knowledge sources point. To make this choice, Paladin uses
also increases the efficiency of Paladin by allowing information about its own state, information about

knowledge sources to be distributed across a
network of several heterogeneous processors. The

network currently consists of a Symbolics 3650*

workstation, a Symbolics Maclvory* workstation,
and four Vax 3200* class workstations.

* Symbolics 3650 and Maclvory are registered
trademarks of Symbolics Incorporated.

f Vax 3200 and DECNet are registered

trademarks of Digital Equipment Corporation.

2

the opponent's position, and estimated data about
i -- i - • -

the opponent s orientation to calculate the relative
geometry between the two aircraft. This relative
geometry isusedto perf0rm___as_uati0n assessment
and to select a new throttle position. After

extrapolating the opponent's state a short time into
the future, Paladin generates a situationally
dependent set of trial maneuvers (Chappell, 1992).
A future engagement state is predicted for each of
the trial maneuvers. These future engagement

states are passed through a group of scoring

functions that evaluate various aspectsof the
tactical situation. The results of the scoring

functions are weighted, based on the mode of
operation, to compute the current best maneuver.
This maneuver is then used to direct the aircraft

until the next decision interval. Figure 1 is a
schematic of Paladin.

From this list of tasks, two have been

identified as largely symbolic in nature. Situation
assessment and selecting a new throttle position

primarily involve classification of the current
situation. Paladin performs these tasks, in real-
time, through specialized knowledge-based

systems. The design and implementation of these
knowledge-based systems are the focus of this
paper. First, however, a brief general discussion
on knowledge-based systems and their relation to
the more well known expert system is presented.

Knowledge-Based Systems

Knowledge-based systems, along with expert
systems, are rule-based (or production) systems
(Brownston, 1985). As rule-based systems they
share many characteristics, including structure and
control mechanisms. All rule-based systems have
three basic parts, working memory, rule-base, and
inference engine. Working memory is the data
structure that holds the known facts defining the
current situation. The rule-base is a group of rules
(productions) that represent the available
knowledge about the problem. The inference

engine is the control mechanism for executing the
rules. All rule-based systems run by matching rule
conditions to the facts in working memory,
choosing one rule from those with all conditions

satisfied, executing that rule to change the situation
or perform a function, and starting the cycle again.

The differences between knowledge-based
systems and expert systems are largely in their
problem solving strategy. An expert system is so
named because it attempts to solve the problem in
the same manner as the human expert. The system
should follow similar lines of reasoning and arrive

at the same conclusion as the expert that is being
used as a knowledge source. A knowledge-based
system on the other hand is based on general
information about the problem domain. Although

input from experts can be incorporated, they are
not the primary source and no attempt is made to
mimic their actions. Knowledge-based systems

can be more robust than expert systems (i.e. give

better coverage of the problem domain) but also
may lack the learned heuristic response of a
human.

Paladin was implemented as a knowledge-
based system for several reasons. First, air
combat experts (i.e. fighter pilots) are not readily
available, so building an expert system would be
more difficult. More importantly, though, is the
application for which Paladin is designed. Paladin
needs to be able to exploit new aircraft capabilities

before the new system or aircraft is built. No real
world expertise exists on which to build such an
expert system. Therefor, Paladin is based on
general air combat principles that help to develop
new tactics and maneuvers that can utilize

hypothetical capabilities.

As a rule-based system, Paladin incorporates
the three components listed previously. The
working memory is stored using an object oriented
approach as discussed in the previous section. The
design and implementation of the inference engine
and the rule-bases are of particular interest in this

paper.

Inference Engine

The inference engine of a knowledge-based
system controls the execution of rules from the
rule-bases. The inference engine must determine
which rules are active, evaluate the preconditions
of the active rules, collect the rules with all

preconditions satisfied, choose one rule to execute
through conflict resolution (Brownston, 1985),
and execute that rule. Types and implementations
of inference engines vary widely, with equally
varying performance results.

Paladin uses a custom built inference engine
that was designed to support real-time execution of
knowledge-based systems. The inference engine
uses a depth-first evaluation strategy (Barr, 1981)
to search the active rule-bases. This results in a

branch of the decision tree being followed until that
branch fails or succeeds, before the next branch is

examined. A rule priority conflict resolution
scheme is used, with rule order taken as implied

rule priority. Hence, the first rule that can be
executed, is executed and that inference cycle is
ended. This forces the rule-base designer to
prescribe execution priority off-line, instead of
using limited computation resources for a search of
the entire decision tree followed by complicated

algorithms to choose one rule for execution.

Paladin's inference engine supports

partitioning of rule-bases using meta-rules to guide
partition activation. When a meta-rule is
encountered that activates a new partition, it has the

effect of initiating the inference process on a new
decision tree and a depth-first search starts down
that new tree. The importance and use of

partitioning in Paladin will be discussed in the next
section.

The inference engine can be stated in psuedo-
code as follows:

(subroutine inference-engine (rule-list)
(if rule-list empty -> quit)
(if preconditions of fast rule in rule-list

are satisfied -> execute rule action

and qui0
(otherwise -> call inference-engine on

rule-list with first rule removed)).

The input to the inference engine is a list of rules
that includes each rule in the rule-base in priority

order. Each rule is expected to have a set of
preconditions and an associated action. This
action canbe any computable function, including a
call to the inference engine with another rule-base

(meta-rule activation of a new partition). The
inference engine is written in Lisp and runs on an
AI workstation.

Rule-Bases _

A knowledge-based system stores the
knowledge used to solve a problem as rules in a
rule-base. The knowledge is used by finding a rule
that matches the current conditions (preconditions
satisfied) and executing its associated action. The

design and set-up of this rule-base greatly impacts

the performance of the system.

Paladin's rule-bases are expressed in two

formats: interpreted lists of condition action pairs
used during the design stage, and compiled lists of
in-line function definitions used in the final, real-

time version of the system. The interpreted lists
are used to develop and debug the initial versions
of the rule-base. Most existing rule-based systems

stop development at this point and implement the
interpreted rule-bases. The use of the interpreted
rules severely limits the execution performance of
the inference engine, thus restricting the real-time
usage of this type of system. To overcome this

problem and allow real-time execution, Paladin's
rule-bases are "compiled" into a list of in-line

|± =:=

4

t

| --

functions. The compiled rule-bases execute

approximately 90 to 100 times faster than the
interpreted rules. On a Symbolics 3650 TM, the
inference engine executes a representative test rule-
base consisting of 40 rules in the interpreted format
in 170 milliseconds. The inference engine executes
the same rule-base in the compiled format in 1.9
milliseconds.

There is a direct relation between the length of
the rule-base's longest execution path and the

knowledge-based system's execution time. The
shorter the execution path is, the shorter the
execution time. The rule-bases used by Paladin

have been partitioned to increase system
performance by grouping related rules into small
partitions and using recta-rules to link the
partitions. This partitioning decreases the number
of rules that are active, and decreases the length of

the worst-case execution path through the rule-
base. The rule-base partitioning allows the
designer to calculate the longest and shortest path
through the rule-base and compute both a
maximum and minimum knowledge source
execution time. The knowledge source's
maximum execution time can be used to insure that
the system will meet real-time execution

requirements. If the maximum execution time
exceeds the allocated execution time, the designer

may be able to repartition the rule-base until real-
time execution requirements are achieved.

Paladin makes use of two rule-bases: a mode

selection rule-base used by the Situation
Assessment Module, and a throttle control rule-

base used by the Active Throttle Controller. The
design and knowledge used in these rule-bases are
described in the following sections.

Mode Selection Rule.Base. Six modes

of operation have been incorporated into Paladin.
These modes are aggressive, defensive, evasive,

ground avoidance, neutral, and disengage. The
Situation Assessment Module is used to model a

pilot's situational awareness and changing problem
solving strategies. Just as a pilot will recognize the
difference between an aggressive and an evasive
situation and react accordingly, the Situation
Assessment Module provides information allowing

Paladin to adapt its problem solving s.trategy based
on thecurrent situation. The determmatl0n of the
current mode of operation is based on the aircraft's
current mission, the current state of the aircraft's

Table1. ModeSelectionDecisionMatrix

Mission
Evasive
Neutral

Defensive

Aggressive

Evasive
Evasive
Evasive

Evasive

Evasive

PositionClassification
Neutral
Evasive

OU: Neutral
OD: Neutralor

Disengage
Aggressive

OU: Aggressive
OD: Aggressive

orDisen[a_e

Defensive
Evasive

DU: Defensive
DD: Evasive

DU: Defensive
DD: Evasive

DU: Aggressive
DD: Evasive

Aggressive
Evasive

Aggressive

Aggressive

OU: Aggressive
OD: Aggressive

or Neutral

OU: Offensive systems up (active)
OD: Offensive systems down (not active)

DU: Defensive systems up
DD: Defensive systems down

systems, and the relative geometry between the
aircraft and its opponent.

The Situation Assessment Module is the

knowledge-based system which uses the mode
selection rule-base. The mode selection rule-base

consists of five partitions and contains nineteen
rules. The shortest execution path in this rule-base

results in a single rule being evaluated, while the
longest path results in twelve rules being
evaluated. Table 1 is a representation of the
decision matrix on which the mode selection is

based. Mission is the combat mission assigned to

the aircraft, as set prior to the engagement.
Position classification is an evaluation, made by

the knowledge-based system, of the current
relative geometry between the aircraft. Unless
failures or situation related problems (e.g. low
fuel) take precedence, this matrix dictates the
selected mode. In the matrix elements, when a

down system can generate two results, the first is
selected if the down system is simply turned off,
while the second is selected if the system is not
functional. A complete version of the mode
selection rule-base is presented in (McManus,
1992).

Throttle Control Rule-Base. A rule-

based Active Throttle Controller determines throttle

and speed brake settings based on the engagement
situation. The throttle controller can set the throttle

to any position between idle and full afterburner,
and the speed brake to any position between fully
retracted and fully extended. The throttle controller
uses the current mode of operation and the relative

geometry information to select one of four
operational modes. These four modes are: go to
best corner speed, go to best range for firing,
close/separate quickly, and force overshoot. Each
mode has a set of specific throttle control rules that
are used to maximize system performance in that
throttle mode.

The Active Throttle Controller uses the throttle
control rule-base. This rule base consists of eleven

partitions and contains 34 rules. The shortest
execution path in this rule-base results in two rules

being evaluated, while the longest path results in
thirteen rules being evaluated. Figure 3 is a

pictorial view of the decision tree for choosing the
throttle control operational mode. The complete
throttle control rule-base is presented in
(McManus, 1992)

Example Cycle

The complete knowledge-based systems are
significantly more complicated than the limited
sections shown in Figure 3 and Table 1. A large
amount of preliminary classification is done to
make the code more readable, understandable, and
maintainable. In order to show the full range of

function, an example cycle is given.

Choosing a point somewhere in the middle of a
hypothetical engagement, the following describe
the pertinent aspects of the current situation. The
Paladin controlled aircraft is behind, a little below,

and to the right of the opponent at a range of 9000
ft. The closing rate is 400 ft/sec, with the throttle
currently set at 1.5 (halfway between military

5

•/11 Go to comer speed.

__. -- _ Go to cornerspeed.

_ Force overshoot•

©z-_ __1l Go to comer speed.

-' • ange_7S_-.."i Go tocornerspeed.

/2o00< x,=¢<2o,ooo _ - ,g
_but a I m in front, m Go to comer speed

-',,,,_,o _t ,_ me.-- _ -- "

'__-"-m Go to comer _p_.

• see h_.-'---- 1 Close/Seperate quickly.

Go to best range for firing.

Figure 3. Throttle Mode Decision Tree

power and maximum afterburner). As for the
aircraft, both the offensive and defensive systems

are operational, and the engine/fuel level are
registering satisfactory. Paladin's mission has
been preset to aggressive.

Given this state, Paladin performs the

following analysis. First, using the relative
positions and the angular measurements between
the aircraft, a knowledge source decides that
Paladin can see his opponent while the opponent
can not see Paladin. Similarly, another knowledge
source indicates that Paladin is behind his

opponent and that the opponent is not behind
Paladin. Then, the closing rate is classified as
"closing fast".

The primary partition of the throttle controller
is then activated. The first applicable rule classifies
the range as medium distance and so this meta-rule
activates the medium range partition. Given the

preliminary classification that Paladin can see the
opponent, theopponent can not see Paladin, and
that Paladin is behind the opponent, another meta-
rule fh'es activating the set range partition, which

corresponds to the throttle mode indicated in
Figure 3. The set range partition is only
responsible for setting the best range for firing the

weapons. Since 9000 ft. is a good firing range, a

meta-rule activates the hold range partition. Since
Paladin is "closing fast", a rule fires setting the
new throttle to 95% of the old throttle in order to

reduce the closing rate.

Next a knowledge source classifies the tactical
position of Paladin. Seeing that Paladin is in
missile range but the opponent does not have a

firing solution, and that Paladin sees the opponent
while the opponent cannot see Paladin, the position
is labeled aggressive.

The primary partition of the situation
assessment rule-base is then activated. Since none

of the special case rules fire (i.e. not in ground
avoidance, not low on fuel, no engine problems,
not in evasive position) control is left to four
meta-rules based on whether the offensive and

defensive systems are operational. In this situation
both systems are up. Therefor, the meta-rule fires
which activates the offensive systems up partition

and the defensive systems up partition in that order
(if no rule fires in the f'trst partition, search will
continue into the second). With both the mission

and tactical position labeled aggressive, a rule fires
to set the mode of operation to aggressive. This

corresponds to the matrix entry shown in Table 1.

=

6

Thus,theknowledge-basedsystemsfinish this
hypotheticalcycle, leaving anaggressivemodeof
operationand a new throttle position of 1.425.
Thiscycle is repeatedeachtime Paladinmakesa
maneuver decision to ensure that situational
awareness is incorporated into the decision
process.

Conclusions

Paladin, a computerized air combat tactical
decision generator, has been developed to study air
combat engagements. The system incorporates
modern sensor and weapon system models, and
aircraft simulation techniques. Paladin uses
artificial intelligence techniques to address air-to-air
combat and agile aircraft in a clear and concise
manner. The Differential Maneuvering Simulator
offers a unique opportunity to evaluate the

performance of the Paladin software in a real-time
tactical environment against human pilots.

Paladin models aspects of the decision-making

processes used by human pilots through the
application of knowledge-based systems.
Complete dependance on the past experience of
fighter pilots (expert system) would produce a
rule-based system so locked into current

capabilities and tactics that it would be unable to
thoroughly test new aircraft capabilities. Paladin
avoids this difficulty by relying on general sources
of information about aircraft and air combat

(knowledge-based system). Results are produced
in real-time through rule-base partitioning and
compilation.

References

Barr, Avron, and Edward A. Feigenbaum (eds.),
The Handbook of Artificial Intelligence, VoI. I,
William Kaufmann, Inc., 1981.

Brownston, Lee, et al., Programming Expert

Systems in OPS5, Addison-Wesley Publishing
Co. Inc., 1985.

Chappell, Alan R., Dr. John W. McManus, and
Kenneth H. Goodrich, Trial Maneuver
Generation and Selection in the Paladin Tactical

Decision Generation System, AIAA Paper #92-

4541, August 1992.

Goodrich, Kenneth H., and John W. McManus,

An Integrated Environment For Tactical
Guidance Research and Evaluation, AIAA

Paper #90-1287, May 1990.

Goodrich, Kenneth H., Dr. John W. McManus,

and Alan R. Chappell, A High-Fidelity Batch
Simulation Environment for Integrated Batch
and Piloted Air Combat Simulation Analysis,

AIAA Paper #92-4145, August 1992.

McManus, John W., "A Parallel Distributed

System for Aircraft Tactical Decision
Generation," Proceedings of the 9th Digital
Avionics Systems Conference, 1990, pp. 505 -
512.

McManus, John W., Alan R. Chappell, and P.
Douglas Arbuckle, "Situation Assessment in
the Paladin Tactical Decision Generation

System," AGARD Conference Proceedings
504: Air Vehicle Mission Control and

Management, March 1992, pp. 8:1-8:16.

Meyer, Bertrand, Object-oriented Software
Construction, Prentice Hall International Ltd,
1988.

Ilsthe_ andm_.#..-_gthedacenee4e4,an_oompl_ andrevle_nilmecolk_lo,o_kdorma_On.Sendconvnemsml_v_gINSbu_lenwrimaleorany_her xspe_orrn_
cokcllmd I,lem_l_. _ tuRgot;me;or_ thisbu_en,mW_ 14ead_e_ Se_lc_.OVec_orale_ Ir,fo_mllonOpu"lomandRepot.121SJe_w*onDav_

1. AGENCYUSEONLY (Leavebhmk) 2. REPORTDATE 3. REPORTTYPEANDDATESCOVERED

May 1993 Contractor Report
., r= m..

4. TITLEANDSUBTITLE

Knowledge-Based Reasoning In the Paladin Taclical Decision Generation System

s. AUTHOR(S)

Alan R. Chappell

7. PERFORMINGORGANIZATIONNAME(S)AND ADORESS(EB)
Lockheed Engineering and Sciences Company
Langley Program Office
144 Research Drive

Hamplon. VA 23666

9. SPONBORIN()I MONITORINGAGENCYNAME(S)ANDADORESS(ES}

National Aeronautics end Space Administration
Langley Research Center
Hampton, VA 23681-0001

S. FUNDINGNUMBERS

C _AS 1-19000

WU 505-64-30-01

8. PERFORMINGORGANIZATION
REPORTNUMBER

10. SPONSORINGt MONITORING
AGENCYREPORTNUMBER

NASA CR-4507

t. _JPPLEMENrTARYNOTES

Langley Technical Monitor: Frederick R, Morrell
Final Report

12m.DISTRIBUTIONI AVAILABILITYSTATEMENT

Unclessified-Unflmlted

Subject Category 08

12b. DISTRIBUTIONCODE

15. ABSTRACT(Maximum200 words)

A real-time tactical decision generation system for air combat engagements, Paladin, has been developed. A
pilot's job In air combat includes tasks that are largely symbolic. These symbolic tasks are generally performed
through the application of experience and training (i.e. knowledge) gathered over years of flying a fighter aircraft.
Two such tasks, situation assessment and throttle control, are Identified and broken out in Paladin to be handled

by specialized knowledge-based systems. Knowledge pedaining to these tasks ts encoded into rule-bases to
provide the foundation for decisions. Paladin uses a custom built inference engine and a partitioned rule-base
struclure to give these symbolic results In real-time. This paper provIdes an overview of knowledge-based
reasoning systems as a subset of rule-based systems. The knowledge used by Paladin tn generating results as
well as the system design for real-time execution Is discussed.

_4. SUBJECTTERMS

knowledge-based controls, rule-based systems, air combat simulation, distr_uted computing,
real-time, situation assessment, tactical decision generation

17. SECURITYCLASSIFICATION 111.SECURITYCLASSIFICATION iS. SECURITYCLASSIFICATION
OF REPORT OFTHIS PAGE OF ABSTRACT

Unclassified Undassified Unclassified

NSN 7540-0t-280-$500

1S. NUMBEROF PAGES

8

16. PRICECODE
_02

20. UMITATIONOF ABSTRACT

StandardForm298 (Ray. 2_S)
Prescribed by ANSI _d. _ t8

29_tO2

_U.S. GOVERNMENT PRINTING OFF'ICE: 1993 - 72J_064/66036

